Zum Hauptinhalt wechseln

Dieser Teardown ist keine Reparaturanleitung. Um dein MacBook Pro 14" 2021 zu reparieren, verwende unsere Fehlerbehebungsseite.

  1. MacBook Pro 14" 2021 Chip ID, Mainboard Seite 1: Schritt 1, Bild 1 von 2 MacBook Pro 14" 2021 Chip ID, Mainboard Seite 1: Schritt 1, Bild 2 von 2
    • IC-Identifikation, Teil 1:

    • Apple APL1103 M1 Pro System-on-a-Chip (SoC)

    • Samsung K3LKYKY0EM-ZGCP 8 GB LPDDR5 SDRAM Speicher (16 GB total)

    • Kioxia KICM225UZ0460 128 GB NAND Flash Speicher

    • Apple APL1098/343S00515 Energiemanagement

    • Apple 338S00600 Energiemanagement

    • Kinetic Technologies MCDP2920 DisplayPort-to-HDMI Wandler

    • Genesys Logic GL9755A Kartenleser Steuerung

  2. MacBook Pro 14" 2021 Chip ID: Schritt 2, Bild 1 von 1
    • IC-Identifikation, Teil 2:

    • Intel JHL8040R Thunderbolt 4 Retimer

    • Macronix MX25U6472F 64 Mb Serieller NOR Flash Speicher

    • Winbond W25Q80DVUXIE 8 Mb Serieller NOR Flash Speicher

    • Renesas RAA225701C ? Synchroner Abwärtswandler

    • Analog Devices LT86422 Synchroner Abwärtswandler

    • Texas Instruments TPS62130B Abwärtswandler

    • Texas Instruments TPS62180 6 A Abwärtswandler

  3. MacBook Pro 14" 2021 Chip ID: Schritt 3, Bild 1 von 1
    • IC-Identifikation, Teil 3:

    • Texas Instruments TVS2200 Überspannungsschutz

    • ON Semiconductor FPF2495CUCX Lastschalter

    • Texas Instruments Lastschalter (vermutlich)

    • ON Semiconductor NCV8160AMX500TBG 250 mA / 5.0 V LDO Regler

    • Nexperia 74AVC2T45 Dual-Bit Spannungspegel-Umsetzer/Sendeempfänger

    • Texas Instruments SN74AXC1T45 Ein-Bit Bus Sendeempfänger

    • Nexperia 74AUP1G07 Einzelpuffer

  4. MacBook Pro 14" 2021 Chip ID: Schritt 4, Bild 1 von 1
    • IC-Identifikation, Teil 4:

    • Texas Instruments LSF0102 2-Kanal Multispannungs-Pegelumsetzer

    • Nexperia LSF0101 1-Bit Multispannungs-Pegelumsetzer

    • Texas Instruments SN74AUP2G07 Zweifach-Puffer

    • Texas Instruments SN74LVC1G07 Einfachpuffer

    • Nexperia 74AUP1G17 Schmitt Trigger

    • Nexperia 74AUP1G08 Einfaches UND-Gatter

  5. MacBook Pro 14" 2021 Chip ID, Mainboard Seite 2: Schritt 5, Bild 1 von 2 MacBook Pro 14" 2021 Chip ID, Mainboard Seite 2: Schritt 5, Bild 2 von 2
    • IC-Identifikation, Teil 1:

    • Kioxia KICM225VF9081 128 GB NAND Flash Speicher

    • USI 339S00912 Bluetooth/WLAN Modul

    • NXP Semiconductor SN210V NFC Controller mit Secure Element

    • Texas Instruments CD3217B12 USB Type-C Port/Power Delivery Controller

    • Renesas ISL9240 Li-Ion Batterieladegerät

    • Winbond W25Q80EWUXIE 8 Mb Serieller NOR Flash Speicher

    • Winbond W25Q80DVUXIE 8 Mb Serieller NOR Flash Speicher

  6. MacBook Pro 14" 2021 Chip ID: Schritt 6, Bild 1 von 1
    • IC-Identifikation, Teil 2:

    • Renesas Leistungsphasen PWM Controller

    • Cirrus Logic CS42L84A Audio Codec

    • Texas Instruments SN012776B0 Audio Verstärker

    • Texas Instruments TPS62130B Abwärtswandler

    • Renesas RAA209100 Aufwärtswandler (vermutlich)

    • Texas Instruments LP8548B1 Hintergrund LED Treiber

    • Texas Instruments TUSB2E22 USB 2.0 Zweifach Repeater (vermutlich)

  7. MacBook Pro 14" 2021 Chip ID: Schritt 7, Bild 1 von 1
    • IC-Identifikation, Teil 3:

    • Texas Instruments INA190A3 Stromsensor-Verstärker

    • Texas Instruments INA190A4 Stromsensor-Verstärker

    • Maxim Integrated MAX9620 1.5 MHz Rail-to-Rail Eingang/Ausgang Operationsverstärker

    • ON Semiconductor NCS333ASQ3T2G Einfach Operationsverstärker

    • Dialog Semiconductor Mischsignal Array (vermutlich)

    • NXP Semiconductor PCAL6416A 16-Bit I/O Erweiterungsmodul

    • Analog Devices ADG1422BCPZ Dualer SPST Analogschalter

  8. MacBook Pro 14" 2021 Chip ID: Schritt 8, Bild 1 von 1
    • IC-Identifikation, Teil 4:

    • Texas Instruments REF3325 2,5 V Referenzspannung

    • Texas Instruments TLV75801P 500 mA / . LDO Regler

    • Texas Instruments TLV75533P 500 mA / 3.3 V LDO Regler

    • Texas Instruments LP5907SNX-3.0 250 mA / 3.0 V LDO Regler

    • ON Semiconductor NCP163BMX180TBG 250 mA / 1.8 V LDO Regler (vermutlich)

    • Texas Instruments TLV70733P 200 mA / 3.3 V LDO Regler

    • Texas Instruments TPS7A201825 200 mA / 1.825 V LDO Regler

  9. MacBook Pro 14" 2021 Chip ID: Schritt 9, Bild 1 von 1
    • IC-Identifikation, Teil 5:

    • Nexperia 74AVC4T774 4-Bit Umsetzender Sendeempfänger

    • Nexperia 74AUP1T45 Umsetzender Sendeempfänger

    • Texas Instruments LSF0102 2-Ch. Multi-Spannungspegelumsetzer

    • Nexperia LSF0101 Ein-Bit-Multi-Spannungspegelumsetzer

    • Nexperia 74AVC2T45 Zwei-Bit-Spannungspegelumsetzer

    • Texas Instruments SN74AUP1T34 Ein-Bit-Spannungspegelumsetzer

    • Texas Instruments SN74AXC1T45 Ein-Bit-Bus-Spannungspegelumsetzer

  10. MacBook Pro 14" 2021 Chip ID: Schritt 10, Bild 1 von 1
  11. MacBook Pro 14" 2021 Chip ID: Schritt 11, Bild 1 von 1
    • IC-Identifikation, Sensoren:

    • Bosch Sensortec BMI282 6-Axis MEMS Beschleunigungsmesser/Gyroskop

  12. MacBook Pro 14" 2021 Chip ID, Touchpad: Schritt 12, Bild 1 von 2 MacBook Pro 14" 2021 Chip ID, Touchpad: Schritt 12, Bild 2 von 2
    • IC-Identifikation:

    • STMicroelectronics STM32L4P5QG 32-Bit ARM Cortex-M4 Microcontroller mit 1 MB Flash Speicher

    • Broadcom BCM5976C1 Touchpad Regler

    • Maxim Integrated MAX11390A A/D-Wandler (vermutlich)

    • Monolithic Power Systems MP6519 5A H-Brücken-Stromregler

    • Texas Instruments TPS3831G18 1.67V Spannungsversorgungsüberwachung

    • Texas Instruments TPS22915 Lastschalter

  13. MacBook Pro 14" 2021 Chip ID: Schritt 13, Bild 1 von 1
    • IC-Identifikation, Sensoren:

    • Bosch Sensortec BMA282 3-Achsen Beschleunigungsmesser

    • Texas Instruments TMP461 Temperatursensor

Besonderer Dank geht an diese Übersetzer:innen:

en de

100%

Diese Übersetzer:innen helfen uns, die Welt zu reparieren! Wie kann ich mithelfen?
Hier starten ›

10 Kommentare

Why so many LDO regulators? Aren't they very inefficient?

allanxp4 - Antwort

In practise, the efficiency of an LDO regulator is dependent on how much voltage it is dropping. While operating, an LDO is effectively a resistor that varies in real-time to ensure its output voltage stays stable despite changes in load current.

Power = I (current) x V (voltage)

Since an LDO is a resistive element, yes, it burns off energy as heat in this process. So an LDO dropping 18V to 5V could be very inefficient, more so when driving a higher current load as shown by the formula above. However, if an LDO is used to generate a 3.3V rail from a 5V rail, it is dropping just 1.7V, resulting in less power dissipation for the same load current.

You’re right, using an LDO for a large voltage drop is not good electrical design. But LDOs have excellent noise rejection performance, meaning they can take a noisy rail from a switching buck/boost converter with lots of transient or high-draw components on it, and create a much cleaner rail for lower-current, more sensitive devices. This is what I expect Apple’s doing.

iEvan -

LDOs drop the difference in voltage as heat, yes - hence the voltage difference between input and output determines the efficiency (eg a 3.0v LDO fed by 6.0v is 50% efficient).

In many cases where LDOs are used in designs the amount of lost power is negligible as the current being drawn is so small - simply not worth using a switcher for that rail. Also, LDOs typically have cleaner output so often an LDO is used to isolate an analog subsystem from noise on the main (digital) system rails.

Hugo -

+ some designs will have both a switcher and an LDO for the same power rail and switch to the LDO when the current is very low. Switchers get inefficient at low currents, so having both can improve efficiency.

Dan K -

Will you have MacBook Pro 16" 2021(Apple M1 MAX inside) Chip ID?

JJ Wu - Antwort

Kommentar hinzufügen

Seitenaufrufe:

Letzte 24 Stunden: 12

Letzte 7 Tage: 103

Letzte 30 Tage: 451

Insgesamt: 43,804